Dihydropteroate synthase of Mycobacterium leprae and dapsone resistance.

نویسندگان

  • D L Williams
  • L Spring
  • E Harris
  • P Roche
  • T P Gillis
چکیده

Two Mycobacterium leprae genes, folP1 and folP2, encoding putative dihydropteroate synthases (DHPS), were studied for enzymatic activity and for the presence of mutations associated with dapsone resistance. Each gene was cloned and expressed in a folP knockout mutant of Escherichia coli (C600DeltafolP::Km(r)). Expression of M. leprae folP1 in C600DeltafolP::Km(r) conferred growth on a folate-deficient medium, and bacterial lysates exhibited DHPS activity. This recombinant displayed a 256-fold-greater sensitivity to dapsone (measured by the MIC) than wild-type E. coli C600, and 50-fold less dapsone was required to block (expressed as the 50% inhibitory concentration [IC(50)]) the DHPS activity of this recombinant. When the folP1 genes of several dapsone-resistant M. leprae clinical isolates were sequenced, two missense mutations were identified. One mutation occurred at codon 53, substituting an isoleucine for a threonine residue (T53I) in the DHPS-1, and a second mutation occurred in codon 55, substituting an arginine for a proline residue (P55R). Transformation of the C600DeltafolP::Km(r) knockout with plasmids carrying either the T53I or the P55R mutant allele did not substantially alter the DHPS activity compared to levels produced by recombinants containing wild-type M. leprae folP1. However, both mutations increased dapsone resistance, with P55R having the greatest affect on dapsone resistance by increasing the MIC 64-fold and the IC(50) 68-fold. These results prove that the folP1 of M. leprae encodes a functional DHPS and that mutations within this gene are associated with the development of dapsone resistance in clinical isolates of M. leprae. Transformants created with M. leprae folP2 did not confer growth on the C600DeltafolP::Km(r) knockout strain, and DNA sequences of folP2 from dapsone-susceptible and -resistant M. leprae strains were identical, indicating that this gene does not encode a functional DHPS and is not involved in dapsone resistance in M. leprae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diaminodiphenylsulfone resistance of Mycobacterium leprae due to mutations in the dihydropteroate synthase gene.

The nucleotide sequence analysis of the dihydropteroate synthase (DHPS) gene of six diaminodiphenylsulfone-resistant Mycobacterium leprae strains revealed that the mutation was limited at highly conserved amino acid residues 53 or 55. Though the mutation at amino acid residue 55 or its homologous site has been reported in other bacteria, the mutation at residue 53 is the first case in bacteria....

متن کامل

Dapsone resistance in Mycobacterium leprae.

The folP1 gene of Mycobacterium leprae, which encodes dihydropteroate synthase (DHPS), was studied for the presence of mutations associated with resistance to dapsone (DDS). When the folP1 of several DDS-resistant clinical isolates of M. leprae were sequenced, two missense mutations were identified. One mutation occurred at codon 53, substituting isoleucine for threonine in DHPS-1, and a second...

متن کامل

Dihydropteroate synthase mutations in the folP1 gene predict dapsone resistance in relapsed cases of leprosy.

Molecular detection was compared with the mouse footpad inoculation test for detection of dapsone resistance in 38 strains of Mycobacterium leprae. Mutations of the folP1 gene (at codons 53 or 55) were found in 6 of 6 strains with high-level resistance, in 3 of 4 strains with intermediate-level resistance, and in 1 of 6 strains with low-level resistance, but not in 22 dapsone-susceptible strain...

متن کامل

Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli.

The genes for dihydropteroate synthase of Mycobacterium tuberculosis and Mycobacterium leprae were isolated by hybridization with probes amplified from the genomic DNA libraries. DNA sequencing revealed an open reading frame of 840 bp encoding a protein of 280 amino acids for M. tuberculosis dihydropteroate synthase and an open reading frame of 852 bp encoding a protein of 284 amino acids for M...

متن کامل

New Mycobacterium avium antifolate shows synergistic effect when used in combination with dihydropteroate synthase inhibitors.

Mycobacterium avium complex (MAC) is resistant to trimethoprim, an inhibitor of bacterial dihydrofolate reductase (DHFR). A previously identified selective inhibitor of MAC DHFR, SRI-8858, was shown to have synergistic activity in combination with dapsone and sulfamethoxazole, two drugs that inhibit bacterial dihydropteroate synthase.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2000